본문 내용으로 건더뛰기

KDI 경제교육·정보센터

ENG
  • 경제배움
  • Economic

    Information

    and Education

    Center

국제무역
Predicting financial market stress with machine learning
BIS
2025.03.24
Using newly constructed market condition indicators (MCIs) for three pivotal US markets (Treasury, foreign exchange, and money markets), we demonstrate that tree-based machine learning (ML) models significantly outperform traditional timeseries approaches in predicting the full distribution of future market stress. Through quantile regression, we show that random forests achieve up to 27% lower quantile loss than autoregressive benchmarks, particularly at longer horizons (3?12 months). Shapley value analysis reveals that funding liquidity, investor overextension and the global financial cycle are important predictors of future tail realizations of market conditions. The MCIs themselves play a prominent role as well, both in the same market (self-reinforcing dynamics within markets) and across markets (spillovers across markets). These results highlight the value of ML in forecasting tail risks and identifying systemic vulnerabilities in real time, bridging the gap between highfrequency data and macroeconomic stability frameworks.